

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Bibliography

```{bibliography} references.bib

```


 # Introduction

In this book, we describe a new version of Draco. Draco was first published in {cite}`moritz2018formalizing`.

Draco has three parts.

	A general description language for visualizations as facts.
[Learn more about how Draco describes visualizations.](facts/intro.md)

	A knowledge base as constraints over facts. This knowledge base describes which visualizations are valid and what
visualizations might be preferred.

	An API to use the [Clingo](https://potassco.org/clingo/) solver to apply the knowledge base to visualizations
described as a set of facts. [Go to the API docs.](api/intro.md)

The code for Draco is [available as open source on GitHub](https://github.com/cmudig/draco2).

Installation

You can install the Draco package from PyPI via pip install draco –pre. Note that the new version of Draco is
currently a prerelease.

 <!– #region –>

Debug

We provide a debugger module to facilitate the fine-tuning of the knowledge base of a [Draco](./draco.ipynb) instance.
You can learn more about the applications of this API in the [applications](../applications/debug_draco.ipynb) section.

DracoDebug

```{eval-rst}
.. autoclass:: draco.debug.DracoDebug



	members:

	







```

DracoDebugPlotter

```{eval-rst}
.. autoclass:: draco.debug.DracoDebugPlotter



	members:

	







```

<!– #endregion –>

 # Overview

Draco exposes methods for [working with chart specifications](draco.ipynb),
[reading data and generating schemas](schema.ipynb), [running programs](run.ipynb), and
[processing ASP facts](facts.ipynb).

 <!– #region –>

Programs

Draco loads its programs from the [asp](https://github.com/cmudig/draco2/tree/main/draco/asp) directory that contains
the Draco knowledge base as answer set programs. Draco exposes the following programs.

	definitions: loads from [define.lp](https://github.com/cmudig/draco2/blob/main/draco/asp/define.lp) that declares
the domains to visualization attributes.

	constraints: loads from [constraints.lp](https://github.com/cmudig/draco2/blob/main/draco/asp/constraints.lp) that
restricts the search space to follow the correct draco general description language.

	generate: loads from [generate.lp](https://github.com/cmudig/draco2/blob/main/draco/asp/generate.lp) that sets up
the search space.

	hard: loads from [hard.lp](https://github.com/cmudig/draco2/blob/main/draco/asp/hard.lp) that restricts the search
space to only well-formed and expressive specifications.

	helpers: loads from [helpers.lp](https://github.com/cmudig/draco2/blob/main/draco/asp/helpers.lp) that defines
useful helper functions.

Additionally, the asp directory contains a [soft.lp](https://github.com/cmudig/draco2/blob/main/draco/asp/soft.lp)
that defines soft constraints in the form of violation/1 and violation/2 predicates. By themselves, these predicates
don’t change the search.

Options for Each Program

```{eval-rst}
.. autodata:: draco.programs



	annotation:

	







```

Each program has both the program as well as the program as a dictionary of blocks. Blocks allow you to pick and choose
parts of a program and access documentation.

`{eval-rst}
.. autoclass:: draco.programs.Program
.. autoclass:: draco.asp_utils.Blocks
.. autoclass:: draco.asp_utils.Block
`

<!– #endregion –>

 <!– #region –>

Renderer

The renderer was designed with extensibility in mind and allows you to create custom renderers for different
specification formats. The renderer module exposes a [BaseRenderer](#baserenderer) abstract class to provide the clients
with a common interface. The [AltairRenderer](#altairrenderer) class is a concrete implementation of the
[BaseRenderer](#baserenderer). In order to constraint the input handled by [AltairRenderer](#altairrenderer), strict
typing is introduced in the [draco.renderer.altair.types](#types) module.

BaseRenderer

```{eval-rst}
.. autoclass:: draco.renderer.BaseRenderer



	members:

	







```

AltairRenderer

```{eval-rst}
.. autoclass:: draco.renderer.AltairRenderer



	members:

	







```

Types

`{note}
Introducing the types through the below-described members made it possible to traverse specifications in a type-safe
manner in the [AltairRenderer](#altairrenderer) class. The types reflect the default specification form, as described
in the [Facts](../facts/intro) chapters.
`

```{eval-rst}
.. automodule:: draco.renderer.altair.types



	members:

	







```

<!– #endregion –>

 <!– #region –>

Server

The server module has two main components: the [BaseDracoRouter](#basedracorouter) abstract base class to provide a
template for declaring groups of API endpoints which might use a [Draco](./draco.ipynb) instance under the hood and the
[DracoAPI](#dracoapi) class to handle registering the actual endpoints to a [FastAPI](https://fastapi.tiangolo.com/)
instance and to allow for customization of the API.

You can learn more on applications of the server module in the [applications](../applications/server.md) section which
includes examples.

BaseDracoRouter

```{eval-rst}
.. autoclass:: draco.server.BaseDracoRouter



	members:

	







```

```{note}
As of now, this abstract class has four concrete implementations:


	[ClingoRouter](#clingorouter)


	[DracoRouter](#dracorouter)


	[RendererRouter](#rendererrouter)


	[UtilityRouter](#utilityrouter)




```

ClingoRouter

`{note}
Defines endpoints under `/clingo`.
`

```{eval-rst}
.. autoclass:: draco.server.routers.ClingoRouter



	show-inheritance:

	


	members:

	







```

DracoRouter

`{note}
Defines endpoints under `/draco`.
`

```{eval-rst}
.. autoclass:: draco.server.routers.DracoRouter



	show-inheritance:

	


	members:

	







```

RendererRouter

`{note}
Defines endpoints under `/renderer`.
`

```{eval-rst}
.. autoclass:: draco.server.routers.RendererRouter



	show-inheritance:

	


	members:

	







```

UtilityRouter

`{note}
Defines endpoints under `/utility`.
`

```{eval-rst}
.. autoclass:: draco.server.routers.UtilityRouter



	show-inheritance:

	


	members:

	







```

DracoAPI

```{eval-rst}
.. autoclass:: draco.server.DracoAPI



	members:

	







```

<!– #endregion –>

 # Server

If you want to use Draco in an environment other than Python, you can access its capabilities through a dedicated REST
API, built with [FastAPI](https://fastapi.tiangolo.com/).

Starting the Server

Based on your needs, you can start the server directly from the command line or as a standalone Python program.

	For simpler use cases such as general exploration of the project or making use of the default Draco model we recommend
starting the server from the [command line](#command-line-interface)

	For more complex use cases such as customizing Draco’s model or extending the API routes, you can start a custom
server instance as a [standalone Python program](#standalone-python-program)

Command Line Interface

You can start a default instance of the server without passing any arguments:

`shell
python -m draco.server
`

A comprehensive OpenAPI documentation of the API will be available at
http://127.0.0.1:8000/docs, also allowing for sending requests directly from the browser
to get a better idea of how the API works.

You can access the CLI options by executing python -m draco.server –help.

```text
usage: python -m draco.server [options]

FastAPI Server exposing the capabilities of Draco


	options:
	
	-h, --help

	show this help message and exit



	--host HOST

	Host to run server on. Defaults to 127.0.0.1



	--port PORT

	Port to run server on. Defaults to 8000



	--reload

	Enable auto-reloading of the server on code changes.









```

Please note that the –reload option is only relevant for local server development.

Standalone Python Program

The main purpose of Draco’s server component is to provide a minimal REST API to be able to use it in a
client-agnostic way. That being said, there is a good chance that the core server does not fit all your needs. While
we focused on simplicity we also did not want to compromise on extensibility. That is why we implemented the server to
be fully compatible with [FastAPI](https://fastapi.tiangolo.com/) and [Uvicorn](https://www.uvicorn.org/).

Before diving into creating a custom Draco server it might be useful to familiarize yourself with the
[module’s API](../api/server.md).

Please note that for all the following examples we assume that you have already installed Draco and its dependencies.

Minimal Example

Via Quick Command

Create a Python file called my_server.py and add the following code:

```python
# my_server.py
from draco.server import DracoAPI

draco_api = DracoAPI()
```

Run by executing the following command:

`shell
uvicorn my_server:draco_api.app --reload
`

``{note}
The command `uvicorn my_server:my_app –reload refers to:

	my_server: the file my_server.py (the Python “module”).

	draco_api.app: the internal FastAPI app of the draco_api instance, declared with the line draco_api = DracoAPI().

	–reload: make the server restart after code changes. Only use for development.


```

##### Via __main__

The example below demonstrates how to spin up a server instance using a Python module as __main__ using uvicorn.
This might be useful if you would like to programmatically set server configurations such as host, port, workers, etc.

Create a Python file called my_server.py and add the following code:

```python
my_server.py
from draco.server import DracoAPI
import uvicorn

draco_api = DracoAPI()

	if __name__ == ‘__main__’:
	uvicorn.run(“my_server:draco_api.app”, host=’127.0.0.1’, port=8000, reload=True)


```

#### Customizing Existing Routes

If you are satisfied with the functionality of the existing routes but would like to customize their metadata (endpoint
name, OpenAPI tags, etc.), you can do so by creating custom instances of our BaseDracoRouter implementations. The core
routers listed below.


	[ClingoRouter](../api/server.html#clingorouter): exposes capabilities of the [Clingo](https://potassco.org/clingo/)
solver


	[DracoRouter](../api/server.html#dracorouter): exposes capabilities of the injected [Draco](../api/draco.ipynb)
instance


	[UtilityRouter](../api/server.html#utilityrouter): exposes functions to convert between different response formats




The example below demonstrates how you can modify the endpoint prefix and OpenAPI tags of core routers.

```python
my_server.py
from draco import Draco
from draco.server.routers import DracoRouter, UtilityRouter
from draco.server import DracoAPI

draco = Draco()
draco_router = DracoRouter(draco,

prefix=’/my-draco’,
tags=[‘My Draco Tag’])

	utility_router = UtilityRouter(draco,
	prefix=’/my-utility’,
tags=[‘My Utility Tag’])

my_base_routers = [draco_router, utility_router]
my_api = DracoAPI(draco=draco, base_routers=my_base_routers)
```

You can run the server using the following command:

`shell
uvicorn my_server:my_api.app
`

Navigate to [http://localhost:8000/docs](http://localhost:8000/docs) to see the updated endpoint names and tags.

`{warning}
Since we did not import the `ClingoRouter` and passed it into the `my_base_routers` list in the example above,
the `/clingo` endpoint will not be available. However, you can import it and add a default instance of it
to the list if you wish to do so.
`

#### Adding New Routes

As DracoAPI makes heavy use of FastAPI, all its rules for adding new routes apply to DracoAPI as well. You can
familiarize yourself with the [FastAPI documentation](https://fastapi.tiangolo.com/tutorial/bigger-applications/) to
learn more about how to add new routes the “FastAPI way”.

In this example we are focusing on adding a new route by creating a custom BaseDracoRouter implementation. The code
below is the implementation of an extremely simple endpoint, available at /metadata/doc which will return the module
documentation of the used Draco instance.

Create a Python file called my_server.py and add the following code:

```python
my_server.py
import pydantic

import draco.server.routers as routers
from draco import Draco
from draco.server import DracoAPI

	class DracoDocReturn(pydantic.BaseModel):
	“””Pydantic model for our custom endpoint.”””

content: str

	class DracoMetadataRouter(routers.BaseDracoRouter):
	@staticmethod
def _register(router: routers.BaseDracoRouter):

“””
Method for registering the endpoints.

We are using a static method here,
since we expect the endpoint structure to be the same
for all instances of this router,
hence we are defining it in a class-scoped method.

However, we are not expecting that each router will use the
same dependencies, therefore we are passing a pre-configured router instance
as a parameter to this method, allowing us to use it to register the endpoints
while being able to transparently use its custom dependencies, such as
a customized Draco instance.
“””

@router.get(“/doc”)
def draco_doc() -> DracoDocReturn:

Note that we can access the server’s Draco instance through the router
return DracoDocReturn(content=router.draco.__doc__)

This instance might be customized via constructor params
my_draco = Draco()

the core routers provided by draco.server, configured with the my_draco instance
core_routers = [

routers.ClingoRouter(my_draco),
routers.DracoRouter(my_draco),
routers.UtilityRouter(my_draco),

]

our custom router, configured with the my_draco instance
custom_routers = [DracoMetadataRouter(my_draco, prefix=”/metadata”, tags=[“Metadata”])]

a list of all routers to be used by the server which inherit from BaseDracoRouter
base_routers = core_routers + custom_routers

Constructing our server instance with the custom routers
my_api = DracoAPI(draco=my_draco, base_routers=base_routers)
```

You can run the server using the following command:

`shell
uvicorn my_server:my_api.app
`

Navigate to [http://localhost:8000/docs](http://localhost:8000/docs) to see the custom endpoint /metadata/doc tagged
with Metadata as well as the core endpoints.

## Further Customization

As the examples above demonstrate, DracoAPI is highly customizable and extensible, allowing for treating routers as
building blocks for your own custom server implementation. If the examples here are not enough to satisfy your needs,
you can always take a look at the capabilities of the underlying [FastAPI](https://fastapi.tiangolo.com/) framework.

If you have suggestions more specific to Draco or DracoAPI, feel free to
[open an issue](https://github.com/cmudig/draco2/issues/new/choose) for it.



            

          

      

      

    

  

    
      
          
            
  # Encodings

Encodings define how [data fields](schema.md) map to visual properties (channel) of the [mark](mark.md).

## Encoding Properties

(encoding,channel) : The visual channel. One of x, y, color, size, shape, or text. Same as the
[scale channel](scale.md).

(encoding,field) : The field that maps to the visual property of the mark. Note that the field should refers to field
name rather than the field entity id. Although we specify the name and the id in the same way in the following
examples, they can be different.

(encoding,aggregate) : How the data is aggregated. One of count, mean, median, min, max, stdev, or sum.

(encoding,binning,N) : How the data is binned into N bins.

(encoding,stack) : One of zero, center, or normalize.

## Example

```prolog
entity(field,root,temperature).
attribute((field,name),temperature,temperature).
attribute((field,type),temperature,number).

entity(encoding,m,e1).
attribute((encoding,channel),e1,x).
attribute((encoding,field),e1,temperature).
attribute((encoding,aggregate),e1,mean).
```

```prolog
entity(field,root,temperature).
attribute((field,name),temperature,temperature).
attribute((field,type),temperature,number).

entity(encoding,m,e1).
attribute((encoding,channel),e1,x).
attribute((encoding,field),e1,temperature).
attribute((encoding,binning),e1,10).
```

```prolog
entity(field,root,temperature).
attribute((field,name),temperature,temperature).
attribute((field,type),temperature,number).
entity(field,root,condition).
attribute((field,name),condition,condition).
attribute((field,type),condition,string).

entity(encoding,m,e1).
attribute((encoding,channel),e1,x).
attribute((encoding,field),e1,temperature).
attribute((encoding,binning),e1,10).
entity(encoding,m,e2).
attribute((encoding,channel),e2,y).
attribute((encoding,aggregate),e2,count).
attribute((encoding,stack),e2,zero).
```



            

          

      

      

    

  

    
      
          
            
  # Facets

With the facet operator, we can partition a dataset by a field and create a view for each field. The resulting chart is
often called a small multiples chart.

## Facet Properties

(facet,channel) : The facet channel. Can be one of col and row.

(facet,field) : The facet field. Note that the field should refers to field name rather than the field entity id.
Although we specify the name and the id in the same way in the following examples, they can be different.

(facet,binning) : Binning a numeric field for faceting.

## Example

```prolog
entity(field,root,condition).
attribute((field,name),condition,condition).
attribute((field,type),condition,string).

entity(view,root,v).

entity(facet,v,f).
attribute((facet,channel),f,col).
attribute((facet,field),f,condition).
```

```prolog
entity(field,root,temperature).
attribute((field,name),temperature,temperature).
attribute((field,type),temperature,number).

entity(view,root,v).

entity(facet,v,f).
attribute((facet,channel),f,col).
attribute((facet,field),f,temperature).
attribute((facet,binning),f,10).
```



            

          

      

      

    

  

    
      
          
            
  # Overview

To express knowledge about visualizations, we first need a language to describe visualizations. Draco describes
visualizations and context around them (e.g. properties of the data and task) as _facts_. In this section, we will
describe the kinds of facts we chose for Draco.

## Draco has a Generic Specification Format

The constraint solver [Clingo](https://potassco.org/clingo/) reasons about the facts that describe a visualization. The
specific format we use to describe facts to the solver is as a _function_ of the name entity or attribute.

### Entities

Entities describe objects. The facts entity describes what other entities associate with an entity. If an entity has
no parents, we use a special identifier root. For example, entity(view,root,v1). says that there is a view v1 on the
root.

### Attributes

Attribute facts specify properties of entities. For example, the number of rows in the dataset in this function form is
attribute(number_rows,root,42). (read as _the number of rows (on the root entity) is 42_). Attribute names can be
tuples, which allow us to distinguish the same attribute that exists on different entities. For example
attribute((field,type),f1,number). specifies the type of a field (here f1) while attribute((mark,type),m1,bar).
specifies the mark type (here of m1).

## Draco’s Specification Format for Visualizations

`{note}
You could design your own description language and use it with Draco or extend the existing language we use here. If you add new information, Draco will not immediately use the new facts until you also add constraints over the facts.
`

Draco uses an encoding based on the Grammar of Graphics (GoG) {cite}`wilkinson2012grammar` and Vega-Lite
{cite}`satyanarayan2016vega`. While our specification format is inspired by Vega-Lite, Draco is not limited to the
features Vega-Lite supports.

At the core, a Draco program encodes visualizations in [views](view.md). A view can contain one or more [marks](mark.md)
that [encode](encoding.md) data and corresponding [scales](scale.md). Besides the visualization, a Draco program can
describe the [data schema](schema.md) and the primary [visualization task](task.md). All of these definitions are
extensible and you can add whatever other properties you care about to Draco.



            

          

      

      

    

  

    
      
          
            
  # Marks

The mark represents the graphical mark of the visualization. Draco uses an encoding based on the Grammar of Graphics
(GoG) {cite}`wilkinson2012grammar`. In the GoG, marks are described as Geometric objects (“geoms” for short). We use the
term mark as that’s the term Vega-Lite {cite}`satyanarayan2016vega` uses.

Marks have [encodings](encoding.md), which define how data fields map to the mark’s visual properties.

If a view has multiple marks, Draco assumes that the marks are layered (i.e. they are in the same view space in the
chart).

## Mark Properties

(mark,type) : The mark type. One of point, bar, line, area, text, tick, or rect.

## Example

```prolog
entity(view,root,v).

entity(mark,v,m).
attribute((mark,type),m,tick).
entity(encoding,m,e).
```



            

          

      

      

    

  

    
      
          
            
  # Scales

Scales map abstract values such as time or temperature to a visual values such as x- or y-position or color.

A scale is primarily defined by its input domain and output range.

Scales with continuous domain and range are called quantitative scales. The scale can be linear, `log`arithmic, etc.

Scales with a discrete domain of categorical values that map to a continuous range are called ordinal scales. Discrete
color scales can either be ordinal when the data are ordered and categorical otherwise.

## Scale Properties

(scale,channel) : The scale channel. One of x, y, color, size, shape, or text. Same as the
[encoding channel](encoding.md).

(scale,type) : The scale type. One of linear, log, ordinal, or categorical.

## Example

`prolog
attribute((scale,channel),s,x).
attribute((scale,type),s,linear).
`

`prolog
attribute((scale,channel),s,color).
attribute((scale,type),s,categorical).
`



            

          

      

      

    

  

    
      
          
            
  # Data and Schema

In Draco, you can describe what you know about the dataset and the fields in the data. There can be only one dataset in
a Draco program.

Besides general statistics about the whole dataset, the schema has information about field types and field statistics.

You can use Draco’s [data schema API](../api/schema.ipynb) to generate a schema description from a file or
[Pandas dataframe](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html).

## Dataset Properties

General properties of the dataset that are not specific to a field are properties of the root.

number_rows : The number of rows in the dataset. Draco can use this fact about the data to recommend chart design that
scale to the size of the dataset.

## Field Properties

Draco can use information about the field type and field statistics. Each field entity is associated with a field. The
facts therefore have the form of e.g. attribute((field,type),foo,number). (read as _the type of the foo field is
number_). For each field, there should be an entity fact entity that tells Draco that the field exists on the root
(e.g. entity(field,root,foo).).

(field,name) : The name of the field.

(field,type) : The type of the data in the column for this field. One of number, string, boolean, or datetime.

(field,unique) : The number of unique values.

(field,entropy) : The entropy of the field. (To save a more accurate value, this field entropy value is 1000 times of
the actual entropy).

(field,min) : The minimum value. Only used for numbers.

(field,max) : The maximum value. Only used for numbers.

(field,std) : The standard deviation. Only used for numbers.

(field,freq) : The frequency of the most common value. Only used for strings.

(field,interesting) : When the [task](task.md) regards specific fields, fields can be marked as relevant to the
task.

## Example

```prolog
attribute(number_rows,root,42).

entity(field,root,f1).
attribute((field,name),f1,date).
attribute((field,type),f1,datetime).
attribute((field,unique),f1,1461).
attribute((field,entropy),f1,7287).
attribute((field,interesting),f1,true).

entity(field,root,f2).
attribute((field,name),f2,precipitation).
attribute((field,type),f2,number).
attribute((field,unique),f2,111).
attribute((field,min),f2,0).
attribute((field,max),f2,55).
attribute((field,std),f2,6).
attribute((field,entropy),f1,2422).

entity(field,root,f3).
attribute((field,name),f3,weather).
attribute((field,type),f3,string).
attribute((field,unique),f3,5).
attribute((field,freq),f3,714).
attribute((field,entropy),f1,1201).
```



            

          

      

      

    

  

    
      
          
            
  # Tasks

The task that the user tries to complete when looking at a visualization helps Draco find the most appropriate
visualization.

## Task Properties

task : The task type. Can be one of value for reading and comparing values of individual points, and summary for
comparing aggregate properties. When the task regards specific fields, fields can be marked as relevant to the task with
[interesting](schema.md#field-properties).

## Example

`prolog
attribute(task,root,value).
`



            

          

      

      

    

  

    
      
          
            
  # Views

A view can group marks and scales together. You need to define a view before you add any marks.

If a view has multiple marks, Draco assumes that the marks are layered (i.e. they are in the same view space in the
chart).

## View Properties

(view,coordinates) : The coordinates system of the view. Can be one of cartesian, or polar.

## Example

Here, we define a single view v of a tick plot.

```prolog
entity(view,root,v).
attribute((view,coordinates),v,cartesian).

entity(mark,v,m).
attribute((mark,type),m,tick).
entity(encoding,m,e1).
attribute((encoding,channel),e1,x).
attribute((encoding,field),e1,temperature).

entity(scale,v,4).
attribute((scale,channel),4,x).
attribute((scale,type),4,linear).
```



            

          

      

      

    

  _static/minus.png





_static/plus.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

